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.4ABSTRACT

Packet transmission via automatic repeat request'JAR%) rotocol over a chad
with unknown, time-varying characteristics is considered. The transmitter, with two
er-xrrecting codes at its disposal, has to decde hdh to use at any given time. Two
algorithms for adapting the error-correcting code to the channel conditions are prsned;
one of them assumes some knowledge of the distbuton of errors in a packet, while the
other mae no such assumption. Both algorithms are based on the observation that,
when a packet's decoding is successful, the receiver kno the number of error in that
packet. Both algorithms build a measure for link quality and update it icording to the
decoding results. The first algorithm makes use of the number of error in the packet to
evaluate the probability that the channel is in a given state. T1e second algorithm
updates its measure according to the highes-rate code that could have possibly corrected
that packet. When this measure is above some predefined threshold, the first code is
used; otherwise the second is employed. The throughput of both algorithms is ase-
tained and they are found to have excellent adaptivity, approading that of a transmitter

with perfect know eof dianne! wonditions.,xtensions to moethan two coaare
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L INTRODUCTION

Automatic repeat request (ARO) is a tedmique for ensuring reliable data transfer, which is used in

link-level protocols of computer commication networks [1]. Data are sent over the link by packets

(frames) to which the transmitter adds panty bits to help the receiver decide whether or not the incoming

data contain errors or not. If there are errors, the receiver sends the transmitter a negative acknowledg-

ment that prompts retransmission. Hybrid ARO (HARQ) is a modification of this scheme in which the

data are encoded by an error-correctiig code [71. By correcting some of the errors, the use of this code

results in fewer retransmissions. A packet's reception is unsuccessful only when its error pattern is beyond

the correcting capability of the code, in which case we say that the dcooding has failed.

An error-correcting code requires many more redundant bits in the packet than does the error-

detecting code, so that there are fewer data bits in a packet of a given size. The number of redundant bits

grows with the error correction capability. When the damnel bit crror rate (BER) is high, a packet under

an error-detecting code will have to be retransmitted many times before it is received sucssfully. The

redundancy of the error correction code is more than offset by the reduced number of retransmissions.

However, when the BER is low few packets have to be retransmitted, even with an error-detecting code.

In this case the full power of the error-correcting code is not utilized; its effect, then, is just a reduction in

the rate at which data are transmitted over the channel. We illustrate this trade-off in Figure 1, which

shows the performance of HARQ for a channel with random bit errors. The ordinate is the channel

throughput, defined as the expectd number of data bits successfully received per packet, normalized to

the packet length, and the abscissa is the probability of bit error. The parameter is the code rate, defined

as the number of data bits divided by the number of bits in the packet. What these curves mean is that, if

the transmitter has several codes at its disposal and it knows the channel BER, it can then select the code

that yields the highest throughput under the (I)ARQ protocol.
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In many instaces, however, channel erm sttistics are not only unknown in adva=e, but also vary

with time. In such cases, which are common i, ground radio links that are subject to fluctuations in signal

strength and to interference,- and in spread spectrum, multiple-accra channel in which the traffic inten-

sity varies with time - it is not desirable to determine a priori the code rate at which the system will

operate. Rather, we may want to adapt the error correction capab lity according to channel conditions.

By doing this, we hope to obtain a performance carve that follows the "envelope" of the curves in Figure

1. Such an ARQ protocol that changes the code rate according to channel conditions is denoted her as an

adaptive hybrid ARQ (AHARO).

Several versions of AHARQ techniques can be found in the literature. The most common one is

based on encoding the data with an error correcting code, but sending first only the data bits, protecting

them by a high-rate error-detecting code [3,4,5]. If this transmission is unsuccessful, the error-correcting

bits are transmitted. This technique avoids wasting channel apacity at a low iER yet has the power of an

error-correcting code available when it is needed.

Another AHARO that is aimed at channels with high BER [6] encodes the packet with an error-

correcin code and sends it to the receiver. If the decoding is unsuccessful, the packet is retransmitted

and the two versions of the packet are combined at the receiver (possibly with different weights) and

effectively obtair, a lower-rate code. The receiver stores all the copies of the received packet and attempts

to decode them under all possible combinations. The receiver requests a retransmission only if all these

decoding efforts fail.

The aforementioned AHARO tedmiques achieve improved channel throughput by increasing the

complexity of the decoding mechamnism as compared with nonadaptive HARQ while using the same feed-

back, namely one bit ("ACK", "NAK") for each transmitted packet. In this paper we select the "dual"

approach and show that it is possible to adapt to varying channel conditions by using the same decoding

procedure as in "regular" ARQ, but slightly increasing the amount of feedback information. The

increased information is based on the bit-error pattern in the packet that is known to the receiver when the

decoding is suaessful. Of course, when the decoding is unsuaessful, no such knowledge exists. The
.3-



AHARQ algorithms we present in this paper utilize this information to construc and update a measure for

channel quality. The better of two codes available to the trammitter is selected from this measure for use

in the next transmission.

This paper is organized as follows: Section H desribes the basic channel models and the assumptions

made to failitate performance evaluation of the algorithms. The first model, in which the dhannel alter-

nates between states of known error distribution with an unknown parameter, is discussed in Section HI,

where we also present an AHARO algorithm that tunes the code rate in this situat o. An algorithm for

adapting the code to variation in a channel that alternate between states of unknown error statistics can be

found in Section IV. In both cases, the resulting dannel throughput is ascertained ty means of a proba-

bilistic model. Section V contains some extensions of these algorithms to allow of more complicated situa-

tions to be handled.
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IL MODELS AND GENERAL CONSIDERATIONS

Consider the following situation: a transmitter sends to a receiver packets of n bits each. The

transmitter has K codes at its disposal, denoted as Cl,c 21 .... cg. A code c, is characterized by a triplet

(n,r,ti), the elements of which are the length of the code-word, the code rate (ratio of the number of data

bits in a packet to n), and the error-correcting capability, which is the maximum number of bit errors that

can be corrected by cl. We use the convention that ri>rs and t <tj for i<j. Note that in this paper all

the code words have the same length; the purpose of this is to facilitate presentation and analysis. This

assumption can be relaxed very easily.

Assuming random error distribution in the packet, we note that, if the number of errors e in a given

packet is smaller than tj,

then c1 is the code with the highest rate that can correct the packet. That is, c1 is the code that con-

veys the largest number of data bits in a packet of a given size; henoe it is the best code for this error pat-

tern. In general, when

tI-1 <e!5tj, 1<isKE

the code c conveys the maximum number of data bits among the K available codes. When e > tr, none of

the codes can decode the packet. Given a set of K codes as described above, the collection of possible

error patterns in a packet can be partitioned into K+1 regions (1,2,..,K+I) so that, for errcr pattern

i'sK, code C is the best, whereas, for i=K+1, none of the codes is useful.

We asume that the distribution of errors in a packet is governed by a parame , the value

of which we denote as the channel state. Conditioned on the value of this parameter, the error pattern for

each packet is drawn independently of other packets. When the chanel state changes, the error distribu-

tion also changes. Thus, knowing this distribution and the parameter value provides enough information

to select the code. Unfortunately, since full knowledge is not available to the transmitter and it thus has
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to base its operation on partial knowledge.

We consider here two types of partial knowledge the transmitter possesses: (a) the transmitter knows

the general shape of the distribution of the number of errors in the packet but it does not know the value

of one of its parameters, and (b) the transmitter does not even know the general shape of the distribution.

The first type of knowledge can be encountered in channels with additive white Gaussian noise where the

errors are random and thus the number of errors in the packet has a binomial distribution, a fact known to

the transmitter. The channel state aj is represented by the BER, pi; while in that state, the number of

errors e in the packet is given by

P(elet) = B(n,ep) = )p"(1-p')R- #

The BER may be time varying, for example, as a result of on-off jamming. However, the rate of change

is relatively slow compared with packet transmission time.

The second type of knowledge may be exemplified by a multiple-access spread-spectrtm channel,

where the prindpal source of errors is interference from other transmitted packets. It has been shown

that, in a Lequency-hopping system, the number of interfering packets nt determines the bit error rate in a

packet [7]. Under random channel aess protocol the number of interfering packets is often modeled as a

random variable, independent from packet to packet, with a Poisson distribution, P(nIcx)=.2e-

where the parameter ctj is called the traffic intensity and, in this case represents the channel state. The

traffic intensity is usually time-varying, but its rate of change is slow relative to packet transmission time.

Thus, for a given ct, the BER is not fixed as in the previous example but is a random variable that is

independent, identically distributed from packet to packet. However, here we assume that the transmitter

does not even know the general shape of the error distribution.
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We assume that the transmitter has a long sequenc of data to send to the receiver. When the algo-

rithm dictates the next packe to be transmitted at rate r, the transmitter uses for that packet the next nr

data bits from that sequenc. If the packet's decoding is successful, the transmitter uses the immediately

following bits for the next packet. If the decoding fails, however, that packet is discarded by the receiver

and the transmitter uses for the next packet the first nr' bits from the sequence it had before transmitting

the packet. Here r' is the code rate to be used in the next transmission.

The objective of the AHARQ algorithms is to allow the transmitter to the best code given the limited

knowledge it has about the channel state. The performance measure we apply to compare the codes is the

average throughput, which is defined as the expected number of data bits conveyed in a packet normalized

to the packet length.

Under the aforementioned assumptions of conditional i.i.d. error patterns and BERs, a reasonable

approach is, for a given channel state, to use one code exclusively. Comsider a specific error pattern distri-

bution P(i), Ii:sK+l, where P(i) is the probability that the number of errom falls into the aforemen-

tioned i-th region. If code ck is used exclusively the resulting throughput will be

&

S(k) = rkyP(i) #

since .P(i) is the probability that c, decodes the packet sucssfully. The code that achieves the highest
i-1

throughput, S,.=max{S(i)}, is the best one to use for the specific channel state. This code may have to

be changed when the channel state changes.

Another way of using the codes is to select a code at random acoording to a distribution u1, I<j<K.

The throughput for this distributions is

S = ujrP(i) #

K

We thus want to choose {u1}, u =1, such that S is maximum. It can easily be shown that assigning
J-

uk= to the ci that maximizes Eq. (0), and u/=O otherwise, also ma:imizes S in Eq. (0).
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Thus, the problem of adapting the cede rate to the dhannel conditiom am be coveniently stated as

the problem of determining which of the K available codes achieves the highest throughput for each dan-

nel state. Note that a given code can be the best for more than one state and that, m fact, we may face a

situation in which all the possible channel states we best served by a angle code of the code set available

to the transmitter. If the state of the channel is known to the transmitter, the problem is trivial because

the best code can be determined from Eq. (0). Hbwev, the dhannel state is usually not known to the

transmitter; it thus has to make a decision based on the sequece of codes it used in the past and the feed-

back it obtained from the receiver.

We turn our attention now to the receiver. An observation that is fundamental to the operation of

the AHARO algorithms presented here is the fact that, upon the correct decoding of a packet, the receiver

can tell how many errors the received packet has contained. There is, of course, the possibility of decod-

ing error, but this can be made very unlikely when a small number of error-detecting bits (outer code) is

added to the data portion of the packet.

The receiver of course knows the set of available codes and their error- correcting capabilities. Thus,

from the error pattern in the packet the receiver can also tell which of the codes could have decoded the

packet correctly. It is obvious that, when the receiver fals to decode a packet, it gains none of the forego-

ing information. In fact, all the receiver then knows is that the decoding has failed.

The information gained by the receiver can be fed back to the transmitter by very few bits: in the

first case in which the number of errors is sent back, the maximum length of the feedback message is less

than or equal to log2t 1+1, which is much smaller than n. For example, the feedback for a

(code255,0.5,19) code cam be represented by 5 bits. In the second case, the receiver conveys to the

transmitter only the index of the highest-rate code that could have corrected the packet, i.e., the feedback

message is log2(K+ 1) bits long. Note that the receiver does not have to send the raw information to the

transmitter; it can carry out the algorithm to determine the next code that should be used and notify the
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ty mmitter only a a th index of that code via a log2K bit messap. For the rest of this paper we will

refer to the v- ismitter as the one who executes the algorithms; however, it should be understood that the

receiver could also execute it, a explained above.

In the next two sectiom we present and analyz the performance of two AHARO algorithms for

which K=2. These are basic algorithms in the seine that AHARQ for K>2 can be built by K-1 operat-

ing basic algorithms in parallel, as disaissed in Section V.
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M. CODE SELEcnON FOR CHANNEL STATES WITH KNOWN STATISTICS

In this section we present an AHARQ algorithm that assumes that the transmitter knows the general

shape of the packet error distribution and uses the number of errors in the previous packets to adapt its

code rate to channel conditions.

Suppose the channel alternates between two states, {)4,X 2}, each of which has a completely known

error distribution and known parameters. That is, the transmitter knows the conditional distribution of

number of errors e in a packet, given the channel state, P(ejX1 ), i{1,2}. Further suppose that the

transmitter has at its disposal two error correction codes {c1,c2} with the parameters (n,rk,tk), k= 1,2.

Recall that the expected normalized number of bits conveyed by a packet encoded by ck, when the channel

is in state ki , is given by S(k,i)=rP(e:tkX). If S(1,1)>S(2,1) and S(1,2)>S(2,2), code c1 is the best

under both states and the transmitter should use that code exclusively. When btth inequalities are

reversed, only code c2 should be used. However, if S(1,1)>S(2,1) and S(2,2)>S(1,2) then the

transmitter should use code c whenever the channel is in state X, , i=1,2. This is the case when the

AHARQ algorithm is needed most.

Since the times of transitions between the channel states are unknown to the transmitter, it does not

know for sure what state the dannel is in at any given time. However, it can represent its level of belief

that the channel is in a certain state, say X 1, by a number q (O<q<1), which will be referred to as the

subjecdve probability. The subjective probability will be updated according to the decoding results of every

packet and will be used by the transmitter to select the code for the next packet. The larger q is, the

more certain the transmitter is that the diannel state is ) and the more likely it is to use code cl. Let us

examine this notion for the simple case of myopic policy, in which the transmitter wish= to maximize

throughput for the next transmission only.

- 10-



A. Myopic Policy

Whenq is the probabilty that the nminel is in state ), at a given intant, and code ck is used, the

expected immediate throughput for the next packet tramission is given by

E(Sk,q) = rj IqPk,(r2)+(1-q)P,(rj2)], kafl} , #

where

P Lrki) = P(I)~,) E'

is the probability of corr, decoding u code ck and d-ann- state ),. The optimal myopic policy is

one that maximize the immediate throughput, that is, it uses the code c1, w ich achieves

E(Sli,q) = imax{E(Sk,q)}

Using Eq. (0), we find that this policy gives rise to the following threshold criterion for selecting a cde: if

9;-W r2P ,(r2l2) -r1P.(r, 12)#r," r[P, (r 11)_-P.,(r, 12)]_-ra[P.,(r2ll1)_-P,(r212) ]

then code cl should be selected; otherwise code c2.

3. Updating q

Usually the trwnmitter is interested in tranitting a sequenc of packets and in maximizing the

average throughput for the whole sequec. To this end it should update the value of q after every

transmissio to obtain a better estimate of the channel statr. Let q(k) be the value of the subjective pro.

bability just before the trmmission of the k-th packet. Using Bayes' rule, the transmitter computes the

conditional probability that the channel is in state X1, given that there were e errors in the previous packet

and that the current value is q(k). This conditional probability becomes the new value. That is,

q~k~l) = 4)p(ei1)#q(k+1) - q(k)P(eji)+(1-q(k))P(ej2)

The new value can be evaluated by Eq. (0) only if the decoding is sucssful. If code c, was used and '.z

decoding failed, the value of q(k+ 1) is given by:

q(k)P(e>t, I) #

q(k+1) = q(k)P(e >ti1l) + (I - q(k))P(e >t 12)

I -



As in the ease of the myopic policy, the code for the k.th packet, c(k), is determined by q(k): if q(k)

is greater than or equal to some predetermined threshold, the transmitter selects c, otherwise it uses cde

c2. The threshold may be different, though, from the one in Eq. (0).

Being a pobability measure, Osq(k)s1. We of course want to have q(k)=l when the dannnel is in

state X, and q=O otherwise, and to have that probability move from one extreme to another soon after

the channel switches states. First it should be noted that, if q(k)=0,1, then q(k+1)=0,1 respectively,

regardless of the feedback. This means that, if the transmitter starts with an overly confident view of the

dannel, or e,er arrives at such an extreme value, it never discards it. Thus, the foregoing extreme values

are useless for our algorithm and the transmitter should never use them. It can easily be shown that

q(k+l) does not achieve the above extremes if q(k) is not at these values. Therefore, if the transmitter

does not use an extreme value for q(1), then q(k) never acquires an extreme value. In the following dis-

cussion, we thus assume that 0<q(k)<1 for all k.

When the channel is in state X1, the probability that q(k+l):q 2 given that q(k)=ql is given by

Prq2jqj} = jP(elXj#

where the sum is over all values of e that, when used in Eqs. (0) (0), result in q2.

The direction in which the sequence {q(k)} moves as a function of k is represented by the expected

drift which, given that dhannel is in state ),, is defined by

1")~e), q(k)P(elkl)
E[q(k+1)-q(k)q(k),),] = I iq(k)P(e 1)+(1-q(k))P(eIX2) - q(k)JP(e i)

+[ q(k)P(e>tjX 1) ]

[q(k)P(e>tj)1) + (l-q(k))P(e>tjX2) -

where t relates to the code dictated by the value of q(k) and the threshold. In the appendix we prove that

the expected drift, given that the channel is in state X1, is positive while for X2 it is negative. That is,

(q(k}) moves in the right directions.

- 12-



C. Chad States wth Unknown Paranudrn

It very rarely happens that the dannel alternates exctly between two states in which the transmitter

knows the parameter of their error distribution. It is more likely that the dnel alternates amng several

states, say al,..,aM, for which only the general shape of the distribution is known but not the values of

the parameter. It turns out that the aforementioned algorithm can be extended to this cme too. The

transmitter selects two states, say X, and k2, which have the same eror distribution as the xi's. For exam-

ple, if the mi's have binomial distribution with unknown parameters, the kj's have the same distribution -

each with a specific parameter value. The parameter values for {XI are selected so that code cl achieves

the higher throughput under ).1 and c2 is preferred under ),2. The states {X,} are called the decision states.

Given the outcome of the decoding, i.e., a number of errors in the padcet or a decoding failure, the value

of q(k+l) is still calculated according to Eqs. (0), (0). That is, the decision states are used in calculating

q(k+1). However, the decoding outcome is determined by the true channel state, say aj, which means

that the probabity of moving from q(k) =q to q(k+ 1)=, 2 is given by

Pr{q 2lql} = ,P(ect,,qj) #

where the summation is taken over all values of e such that Eqs. (0) and (0) result in q2.

D. Quandmadun ot q

The metric q is continuous and may acquire any value O<q<l. However, for practical reasons it is

convenient to allow q to take only a finite number of values in the (0,1) interval. Quantizing q will also

facilitate the performance evaluation of the algorithm over a time-varying dannel. As it turns out, quan-

tizing q down to very few levels does not degrade the performance of the algorithm if the quantization

levels are chosen properly.

.13-



A quantization scheme for q is defined by the quantization interval boundaries,

O=do<dl<d2<... <dmv<dv=l, and by M discrete values of q, namely, qj,q2,...,qM, where

di-..<q1<dj. Now, if there are a errors in the packet and q(k)=q, the state chances to q(k+l)=q such

that

dj-< qP (ejX) )sd #
qjP~eIL)+(1-qg)P~eIX) 4

if est, and if e>t the new value is qy for which

d/_z< q1P(e>tXj) :sd#

q1P(e >q t I A) + (I - q)P(a > tx,2)

Note that, if some quantization intervals ae too large, it may happen that for a given q, all values of e

lead to q = q in Eqs. (0) and (0). If this is allowed to happen, the algorithm will never leave the value q

and will thus lose its adaptivity. Therefore, the quantization intervals should be small enough to ensure

high probability for leaving each of them

E. Performamne Evanadm

We use the following model to evaluate the throughput achieved by the aforementioned algorithm:

time is slotted into equally long slots, each of which fits an n bit packet. The transmitter has two codes cl

and c2, where CI = (n,ri,:t). The tammitter has a long data sequenc to send which it does so by taking

enough data bits in each slot to fit into an n bit packet, which is encoded by one of the above codes. The

channel can be in one of N states, a1 ,...,ez, where each state has a known error distribution, possibly

with an unknown parameter. The channel changes states at the slot boundaries and the channel state tran-

sitions are done aorrding to a Markov chain with transition probabilities Pj(aycz,), whid are not neces-

sanly known to the transmitter.

- 14-



Following each transmission, the receiver sends back to the transmitter the number of errors if the

packet decoding was succssful or a NAK if it was not. The feedback message is sst instantly on an

error-free dmnnel.

The transmitter keeps the link quality measure q that am acquire one of of M possible values.

Based on feedback information, the value of q is updated acrding to Fqs. (0) and (0); two states X1 and

X2 with known statistics are used in these equations. These two states are used for decision purposes, as

discussed above, and they are chos to make the code cl achive the higher througbput under X, and c2

do so under X2

Whenever the value of q is greater than or equals a pret ind threshold q,,, the transmitter uses

code C2; otherwise it uses code c1.

Under the above assumptions the dynamics of the algorithms can be described as a Markov chain

{(q(k),a(k)), k= 1,2,...}, where q(k) and ot(k) are the value of q and the dannel state, respectively, just

before the k-th slot. The chain has MN states and the transition probabilities are given by

P{q(k+1),(k+1)q(k),a(k) = [XP(e Ja(k))8(e,q(k),q(k + 1))

+ P(e>tq (klct())E(e,q(k),q(k+ 1))] I #

whem 8(e,q(k),q(k+ 1))- I if using the values of e and q(k) in Eq. (0) yields q(k+ 1), and 0 otherwise.

Similarly, ,(e,q(k),q(k+l))=',O if using e and q(k) in Eq. (0) yields q(k+l) or not, respectively. Also,

tq(kft=l1 if q(k);-qh, and O,)=t thewie

When the quan aon levels are chosen carefully as explained above, none of the states is an

absorbing state and the chsain is thus ergodic with a steady-state probability vector a given by

where P is the state transition matrix.
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he throughput S is given by

N th-1 M
S = [7, 1jr 2P(eSt 21a1) + X7,irjjrP(estifrzj)] #

-i 1 -1 jWh

where iTIr is the steady-state probability that the damael is in state (qj,aj).

F. Dhicu of Numerkal RmeAot

The throughput of the algorithm was ascetained numerically and the resuts are shown in Figures

(2).(4). In all these figures the w mitter has two codes, (255,1,0) and (255,0.5,19). 7be ezor in a

packet wre random and the conditional distribution of the number of packet is binomial with paramete

(BER) aj whidh varies with time. In computing q, the transmitter uses two decision states with the above

error distribution and with parameters kX=0.001 and 2=0.01. The dian alternates between two states

a1 and a2, which are not necessarily the same as the decision states.

To appreciate how well the algorithm works, we compare the throughput it achieves to that achieved

by three other simple schemes:

(1) Transmitter uses code cl only, regardless of feedback.

(2) Transmitter uses code c2 only, regardless of feedback.

(3) Transitter knows the exact channel state at all times and thus always matdies the best code for that

state. This scheme, called the ideal observer, clearly sets an upper bound on the throughput achievable by

a transmitter with limited information.

Figure 2 depicts the throughput achieved by the algorithm as a function of the threshold level. The

channel transitions are symmetric, which means that the dhianel's average stay in a state before making a

tasition is equal for both states. The abscisa in Figures 2(a)-(c) is the sojourn time - the average stay in

a state expressed in packet tra r.ssion lengths. Four values of sojourn time are depicted in these figures:

100, 10,3. In Figure 2(a) the channel states are l=0.0008 and a 2=0.03. In this case we see that the

algorithm's throughput is better than that achieved by either of the codes when it is used erdusively even

for very small sojourn times. When the danei stays at the state longer, the throughput approaches the
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upper bound achieved by the ideal observer. Note that the threshold level has little effect on the

throughput, so that its selection is not a critical design issue.

In Figure 2(b) the states are at=0.004 and a2--0.06; in both of them code c2 is preferred. In this

me the threshold level and the sojourn time have only slight effect on the thrdnu put. In Figure 2(c) the

separation between the channel states is smaller and here, at short sojourn times, the threshold determines

whether the algorithm is better than cl or worse. When the sojourn time is medium to large, the

algorithm's throughput is larger than that of cl and approahes the ideal curve.

Figure 3 depicts the effect of the sojourn time on the throuhput in a channel with symmetric tansi-

tions. Note that the algorithm approaches the ideal curve for relatively short sojourn times. Figure 4 dep-

icts the performance of the algorithm for a dannel with asymmetric transitions. In this case the daMe

spends an average of 20 packct transmission times in state a, and a different time in a2. The abscissa of

Figure 4 is the average time spent in state a2. Note that the algorithm follows the ideal curve quite

Closely.
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IV. AN ALGORrnTM FOR A CHANNEL WITH UNKNOWN ERROR STATISTICS

The algorithm in the previous section made direct use of the number of errors in the packet, which

was possible because the general characteristics of the error statistics were assumed to be known. ThkiS

knowledge may not always be available, since very often there are many diverse factors that influence the

error pattern and their overall effect cannot be quantified. In this section we consider a channel with unk-

nown distribution of the error patterns.

As in the previous case, here too, when a packet is sent by code ci and it is sucssfully decoded, the

number of enors in that packet is known to the receiver. Also known to it is the set of codes available to

the transmitter and their characteristic {(n,rjt1)}. Thus, for each error pattern observed in a decoded

packet, the receiver can tell which of the other available codes could have been used to decode that packet

successfully. It is reasonable to assume that, if the code of rate rT could decode the packet all other codes

with rates r/< r, could have done so too. T1hus, the receiver checks only those codes with rates higher than

the code that was actually used. The receiver sends to the transmitter on the feedback chanmel the index

of the highest-rate code that could have decoded that packet successfully.

As before, when the packet's decoding is unsucssful, the receiver sends only a NAK to the

transmitter. In both cases, the decoding's success information is used by the transmitter to update its

knowledge about the channel and to determine the code for the next transmission.

The basic algorithm is the one that deddes between two codes, say, c1 and C2, where, say, rl>r,,

(t 1 <t 2). In this case, the set of all the possible errxo patterns is partitioned into three groups: (1) those

that can be corrected by both codes, (2) those that co be corrected only by c2, and (3) error patterns that

can be corrected by neither of these codes. In the following discussion we assume that, while time the

channel is in a given state, say ,, the error patterns are independent from packet to packet. The proba-

bility that an error pattern falls into group i, when given the channel is in state a L dcwted by Pj(i),
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i=1,2,3.

We propose that the tramitter keep a metric, denoted by x, that measures how we! one code per-

forms as compared with the other code. The transmitter bases its code selection on this metric. Specifi-

cally, when the transmitter uses code c2 and the error pattern fails into group 1, this means that the

transmitter could have achieved throughput greater by rl - r2, had it used code c1 instead. Thus, in this

case x is increased by the amount rl-r 2. If the errot patterns falls into group 2, the meaning is that, if

the transmitter had used c1 for this packet, it would have lost the whole packet whereas under c2 it

obtained the throughput of r2. The transmitter, therefore, subtracts r2 from the vah of x in this case. If

the error pattern falls into group 3, then x remained undanged since none of the codes can convey any

data.

Consider now the case in which the transmitter uses code c1. If the error pattern falls into group 1,

here too, x is increased by r, - r2. However, the receiver caot distinguish between error patterns 2 and

3 since in both cases the decoding is unsuccessful under cl. Thus, when the transmitter is operating with

c1 the x can be either decreased by r 2 or remain unchanged for both erro pattern groups. In the follow-

ing discussion we assume that the former possibility is used.

We denote by x(k) the value of x just before the k-th packet tranmission and, as before, c(k) is the

code used for the k-th packet. The transmitter starts with x(1)=O and uses c2 for the first packet. It

updates x according to the feedback information as described above and uses the value of x(k) to deter-

mine c(k+ 1) according to the following rule:

If x(k)SO then c(k+l)=c2, else c(k+l)=c1

Suppose now that the chane is in a given state a1, with error region distribution

(Pj(1),Pj(2),Pj(3)}. Recall that since the packet error patterns are i.i.A, one code should be used

exclusively while the channel is in this state. If code C is used in state aj, the tt will be

Sj (k) = ,kXPj(i) 1=1,2 #
91
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For the distribution, {P,(i)}, code c1 is better than c2 if

rP(1)>r2[P(1)+P(2)] #

and code c2 is better otherwise. Sano x(k) determines c(k) acrding to the above rule, we want {x(k)} to

be positive when {Pj(i)} is such that inequality Eq. (0) holds and be negative when it is reversed.

The expected drift of {x(k)} for that distribution is given by

E(x(k+l)-x(k)jx(k)<0,ajj = [r 1-rjP()-r2Pj(2)

and

E[x(k+1)-x(k)Ix(k)> 0,a1] = [[r-rjPj()-r2 Pj(2)+Pj(3)] #

Note that for x(k)sO the drift is positive when the inequality Eq. (0) is true and negative when it is

false. That is, when c2 is used (x(k)<0), the feedback provides the transmitter with enough information

so that the sequenc {x(k)} increases or decreases acwrdin to the conditions in Eq. (0). Thus, under

{P,(i)} for which Eq. (0) is satisfied, if x(k)sO, the sequence {x(k)} will move up and eventually cross the

threshold so that the correct code, cl will be used. When x(k)sO and the inequality sign in Eq. (0) is

reversed, {x(k)} will tend to remain negative, thereby causing c2 to be used, which is the better code for

this case.

The situation is slightly different for positive values of x(k) in whicd c1 is used. For this code, the

error pattern groups 2 and 3 are indistinguishable because el cannot correct any of them. This causes the

drift when x(k)>O to be positive or negative under slightly different conditions from those given in

Eq. (0). Although in most cses these different conditions do not degrade the algorithm's performance,

there are some distributions {Pj(i)} for which such degradation may occur. This happens when the channel

is in state afor which the following double inequality holds:

r2[P(1) +P(2) < rP(1) <r2  #

For this distribution, Eq. (0) holds, implying that cl should be used. Indeed, the drift for x(k)<O is posi-

tive, which makes the algorithm less likely to use c2. However, when x(k)>0, Eq. (0) yields negative

drift, because of the right inequality in Eq. (0), which tends to push {x(k)} down. The total effect is that
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{x(k)} oscillates around the zero level, thereby acepting negative values more often than if it had stayed at

a level far away from the threshold. Note that when x(k) :0, code c2 is used with the attendant loss of

throughput, sinc c1 is better for this distribution.

The region of P(1) and P(2) for which Eq. (0) holds is depicted in Figure 5. For all other possible

combinations {Pj(i)l, the drift has the proper sign for both negative and positive values of x(k), thus mak-

ing {x(k)} move in the right direction according to Eq. (0).

When the channel state changes so that the inequality Eq. (0) is reversed, the code should also

change to provide the highest possible throughput. That is, {x(k)} should change sign as fast as possible.

If {x(k)} is not bounded from above and below, when the channel onditiom persist for a long time {x(k)}

will grow in either the positive or negative direction. A large value of {x(k)} results in a long time to

reach the threshold and to switch codes after channel state changes, implying loss of throughput.

To expedite threshold crossing upon state change we set upper and lower bounds B. >0 and B, <0,

respectively which we do not allow {x(k)} to cross. Thus, when the error pattern is in group 1

x(k+ 1) = min(B.,x() + r,- r) ,

and when the pattern is in group 2 and x(k)sO, or in groups 2 or 3 and x(k)>0:

x(k+1) = max(B,x()-r2) #

The boundaries, denote as B., B, should be low enough to allow for quick code change when it is needed,

as well as high enough to keep small the probability of level crossing as a result of statistical fluctuations.

When {P(i)} is such that for x(k)>O the drift is negative and for x(k)<O it is positive (Eqs. (0),

(0)), {x(k)} fluctuates around the zero level regardless of the level of B.. Since at this region ¢ should be

used, we increase the time {x(k)} is positive by occsionally setting z(k) to B. upon zero crossing from

below. We thus modify the algorithm as follows: whenever an error pattern of type 1 occurs such that the

upward step (of size r2- r) of x(k) Causes it to Cos the zero level, x(k) makes this normal step with pro.

bability 1-q, and with probability q, x(k) is set to the value of B.. Eq. (0) now applies only in the case
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of x(k)>O or x(k):s-(r 1-r2). However when -(rj-r)<x(k)s0, the new value of x upon error pattern

of type I is given by:

(k)+rl-r2 w.p. 1-q,
x(k+l) = {B" 2 w.p. qC #

A. Performance Evuhualm

The model we use to evaluate the performance of this algorithm is similar to that of the previous

section. Channel time is composed of fixed-size slots equal in length to the packet size. The feedback is

sent to the transmitter instantly on an error- free chamel. The channel alternates among N possible

states, (ap. ... etjy) where each state a, (j=1,2,..,N), is characterized by a distribution {Pj(i)} of the

error pattern groups. The dianel may switch states only at slot boundaries and doing accrding to a Mar-

kov chain with transition matrix P(aC(k+)=zjl i )=c,,)-P(jli).

Sinot rl, r2 are rationals, we can represent the two nonzero steps of x, nwamely, r1 - r2 and r 2 by

integers. As before, B. and B, are the lower and upper bounds, respectively which memn that the channel

metric x can take B = B, +B, + I values. Thus, the process {(a(k),x(k)), k= 1,2,...} is an ergodic Markov

chain. The chain's transition probabilities are given by

P(a(k+ 1) = aj,x(k+ 1) =xl a(k)= i,x(k) =x.) = P,.(ji)P,(j In) #

where

PA)q, if j=B. and -(rj-r)<n:SO

Pj(l)(1-qc) if j=n+rl-r 2 and -(rj-r,)<n:SO
Pi(1) if j-min(B.,n+r -r) and n s-(rl-r) or n>O
P1(2) if j=mr(B,n-r), n<O

P1 (2)+P1 (3) if J=n-r, n>O
P(3) if j=n, n!9O

For same combinatios i r1, r 2, x(k) never acquires same of the values between B and B we consider only the values x(k)
actually takes.
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If we denote by ir(jn) its steady state probability that the chain is in state (cj.,the throughput of

the algorithms can be written as:

S f I (in)r2[P(1)+P(2)] + "w(in)rlP(1) I

B. Dbcuamu of Nunmerical Remin

The performance of the algorithm is depicted in Figures 6-8. The two codes used in these curves are

cl = (255,1,0) and c2 = (255,0.5,19). Figure 6 shows the throughput obtained by the algorithm when the

Channel alternates between two states with equal expected sojourn time in both states (symmetric transi-

tions). We see that, for very short sojourn times, the throughput is better than that achieved by using a

single code only, that is, using no information. As the sojourn time increases, the throughput gets closer

to the one achieved by an ideal observer.

Figure 7 shows the effect of q, on the throughput. In Figures 7(a) and 7(b) the channel stays in one

state only. However, the distribution {P(i)} of this state is such that the drift has positive sign for x<O

and negative otherwise, a situation that causes {x(k)} to oscillate around the zero level and thereby to

lower throughput. For this distribution code c1 is better and we can see that, as the probability of *aping

to B, upon zero crossing from below increases, so does the throughput. Thus, one sh-nd operate in such

situation with a large value of q,. One may wonder whether increasing q, will have negative effect when

{P(i)} is not in the region depicted by Figure 5. Figure 7(c) shows that, for one such distribution, q, has

very little effect.

Figure 8 shows the improvement in throughput that can be achieved by increasing B, and B.. We

see that the improvement is rather small. Figure 9 compares the performance of the algorithm described

in the current and the previous sections. To compare them on an equal basis we assumed the number of

errors in the padt to be binomially distributed and the two BERs to be 0.008 and 0.02. The dannel

altrntes between these two states and make symmetric transitions. The same two codes that were men-

tioned above serve both algorithms. The curves in Figure 9 show that both algorithms increase their
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throughpt as the sojourn tuit increases. However, the algoritl of the previous section, which uses

knowledge of the error distribution, achieves higher throughput than does the algorithm of the current sec-

tionm which does not use such knowledge.
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V. EMMOENS

The AHARO algorithms we have presented in Sections M and IV select one of two codes to use in a

time-varying channel with some unknown diarmestics. The code selecion is based on a measure for

channel quality that is updated by utilizing enhanced feedback sent from the receiver to the transmitter.

The performance curves for these algorithms show that the throughput achieved is not very far from that

achieved by an ideal observer who has all the channel information.

These algorithms can be extended to the case in which the transmitter holds K>2 codes. For a set

of codes cj,..,cx with rj>...>r1 , the transmitter performs out K-I two-code algorithm in parallel for

the pairs of codes (C1,c,), (c2,c3),.., (Cr-..,cx) and selects the code with the highest throughput.

If the k-th packet is transmitted with code c and the decoding is successful the receiver knows the

number of errors in this packet and also which of the K codes could have been used toqty measures,

qi,+ or xj. +1 . This updating is more complicated when the decoding of the c packet fails. The receiver

then knows that, for all j, j<i, the code c, would have also failed. HoEwever, there is not much that can

be said about the possible success of C,, j> i. One option is not to update the measures for the algorithms

that compare these codes. Another option is to assume that, for all j> i, code c, could have decoded that

packet correctly. Which of these alternatives is better will depend on the channel mode.

The selection of the best of K>2 codes is a little more complex than in the case Jr - 2. We propose

that the algorithms select the highest rate code, say, ci for which the quality measure q1,j+1 is above the

threshold (or x:+1 is above zero). The details of this selection and the performance evaluation of

multiple-code algorithms will be presented in a forthcoming paper.
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Other extensions, emb as operation over a dhnnel with a larg propagation delay and a noisy feed-

back channel, may also be of interest. They wM be the subjc to future research.
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APPENDIX: Evutm Of The Expecte Drift For q

In this appendix we prove that, for channel states X1 )'2 the drift under X, is positive,

E(q(k+1)-q(k)lq(k),1)>O, and une ) 2 E(q(k+1)-q(k)q(k),2)<O.

Prof Denmte by q, q' the values of q(k+ 1), q(k), respectively. By definition, when wde c, is used

('q P(el),i)q + P(elI,)(I-q) (Al
=1P(e>tIX 1j)q q(Al)

P~~tj~~q+ P(e>tIX2)(1-q)-q>t

Following some simple algebraic manipulation, the drift can be written a

E~'qqk]=q~-)I) P(e lj) -P(ejk I P~jt2) P(e>t l~j) -P(e>fPL2) P(e>o;
E~q -jq~t1  = q( -q)[ P(ej?#.)q+ (1-q)P(ejt,) P~ X)+P(e>tjI),)q+(1-q)P(e>tjI),)

Consider first the denominator of the term in the summation in Eq. (M2). Let el be the set of

values ofte such that P(eIX),j2P(eX~) when ece4. Since O<q<1,

P(e .\2,}SP(e IX,)q + (1-q)P(e l))tgP(e .\, for ec t b (M3)

and

Thus, for eceb the numerator is positive; otherwise it is negative. Hence, for both cases:

P ~ P (el)1) -P)eIX 1)-P)eI)2) (AS

Similarly, for e > t

__________________________ ~ j) P(e>t,1Xj)-P(e>t1 2) P(e>tjjj) (M6)
P(e>tI)1 )q+(1-q)P(e>t IX2) PEuIl P(e>tjI)lj)

Thus, for all O<q<1

E[q'-qlq,t1 > q(l-q)[[P(e,\ 1 )-P(e)2)]+P(e>ilt 1 )-P(e>tilA,)1 =q(l-q)O. (A7)
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tnd r state X2the drift is given by

E[q-q lq,).j =q (-q) ~ P(el)(-q)~tP(el eI)-2 k2~1 ?)+(-)~~j)~j ~~iX

<q( P -)X(e I~t) -P(e 2) P(e~et1 2 + 1)P(e>til)] (~i q)O(A8)
Pa-0jI~q+( )Pe>t j

< q~l-)O (AS
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